

BÖHLER EAS 4 M-FD

Flux-cored wire, high-alloyed, austenitic stainless

Classifications					
EN ISO 17633-A	EN ISO 17633-B	AWS A5.22			
T 19 12 3 L R M21/C1 3	TS 316L-F M21/C1 0	E316LT0-4/-1			

Characteristics and typical fields of application

Rutile flux-cored wire of T 19 12 3 L R / E316LT0 type for welding of stainless steels such as EN 1.4435 / 316L. Easy handling and high deposition rate result in high productivity with excellent welding performance and very low spatter formation. Increased travel speeds as well as self-releasing slag with little demand for cleaning and pickling provide considerable savings in time and money. The wire shows good wetting behavior and results in a finely rippled surface pattern. The wide arc ensures even penetration and side-wall fusion to prevent lack of fusion. Suitable for service temperatures from –120°C to 400°C. Resists intergranular corrosion up to 400°C. For higher temperatures a niobium-stabilized consumable such as BÖHLER SAS 4-FD is required.

BÖHLER EAS 4 M-FD Ø 0.9 mm is well suitable for welding of sheet metal from 1.5 mm and BÖHLER EAS 4 M-FD Ø 1.2 mm can be used for a wall thickness ≥ 3 mm. For welding in vertical-up and overhead positions, BÖHLER EAS 4 M PW-FD should be preferred.

Base materials

EN 1.4401 X5CrNiMo17-12-2, 1.4404 X2CrNiMo17-12-2, 1.4409 GX2CrNiMo19-11-2, 1.4429 X2CrNiMoN17-12-3, 1.4432 X2CrNiMo17-12-3, 1.4435 X2CrNiMo18-14-3, 1.4436 X3CrNiMo17-12-3, 1.4571 X6CrNiMoTi17-12-2, 1.4580 X6CrNiMoNb17-12-2, 1.4583 X10CrNiMoNb18-12 UNS S31600, S31603, S31635, S31640, S31653; AISI 316L, 316Ti, 316Cb

Typical analysis of all-weld metal						Ferrite WRC-92	
	С	Si	Mn	Cr	Ni	Мо	FN
wt%	0.03	0.7	1.5	19.0	12.0	2.7	3 – 10

Mechanical properties of all-weld metal – typical values (minimum values)						
Condition	Yield strength R _{p0.2}	Tensile strength R _m	Elongation A (L ₀ =5d ₀)	Impact work ISO-V KV J		
	MPa	MPa	%	20°C	-120°C	
u	410 (≥ 320)	560 (≥ 510)	34 (≥ 30)	55	35 (≥ 32)	
untreated as-welded – $\Delta r + 18\% CO_{\odot}$						

Operating data

* * *	Ø mm	Wire feed m/min	Arc length mm	Current A	Voltage V
	1.2	5.0 – 15.0	~ 3	130 – 280	22 – 30
7	1.6	4.5 – 9.5	~ 3	200 – 350	25 – 30

Welding with standard GMAW power source with DC+ polarity. No pulsing needed. Backhand (drag) technique preferred with a work angle of appr. 80° . Ar + 15-25 % CO_2 as shielding gas offers the best weldability. 100 % CO_2 can be also used, but the voltage should be increased by 2 V. The gas flow should be 15-18 l/min. The heat input should not exceed 2.0 kJ/mm, the interpass temperature be limited to max. 150° C and the wire stick-out 15-20 mm. The scaling temperature is approx. 850° C in air. Post-weld heat treatment generally not needed. In special cases, solution annealing can be performed at 1050° C followed by water quenching.

Approvals

TÜV (5349.), DB (43.014.15), CWB, DNV GL, LR (M21), CE